图像处理与分析 实验五

111次阅读
没有评论

共计 3049 个字符,预计需要花费 8 分钟才能阅读完成。

实验内容:对一副图像加噪,进行几何均值,算术均值,谐波,逆谐波处理,显示图像的结果

导入图像

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("1.png", 1)
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# cv.imshow("img.png", img)
plt.imshow(img)

图像处理与分析 实验五

添加随机盐噪声

# 加噪声
(rows, cols, chn) = img.shape
salt_img = np.copy(img)
for i in range(100):
    x = np.random.randint(0, rows)
    y = np.random.randint(0, cols)
    salt_img[x, y, :] = 255

# cv.imshow("noise", img)
plt.imshow(salt_img)

图像处理与分析 实验五

添加高斯噪声

from skimage import util

gauss_img = util.random_noise(img, mode='gaussian', mean=0, var=0.01)
plt.imshow(gauss_img)

图像处理与分析 实验五

几何均值滤波器

def geometric_mean_operator(roi):
    roi = roi.astype(np.float64)
    p = np.prod(roi)
    return p ** (1 / (roi.shape[0] * roi.shape[1]))

def geometric_mean(image):
    new_image = np.zeros(image.shape)
    image = cv.copyMakeBorder(image, 1, 1, 1, 1, cv.BORDER_DEFAULT)
    for i in range(1, image.shape[0] - 1):
        for j in range(1, image.shape[1] - 1):
            new_image[i - 1, j - 1] = geometric_mean_operator(image[i - 1: i + 2, j - 1: j + 2])
    new_image = (new_image - np.min(image)) * (255 / np.max(image))
    return new_image.astype(np.uint8)

def rgb_geometric_mean(image):
    r,g,b = cv.split(image)
    r = geometric_mean(r)
    g = geometric_mean(g)
    b = geometric_mean(b)
    return cv.merge([r, g, b])
geometric_mean_img = rgb_geometric_mean(gauss_img)
plt.imshow(geometric_mean_img)

图像处理与分析 实验五

算数均值滤波

def arithmetic_mean(image):
    new_image = np.zeros(image.shape)
    image = cv.copyMakeBorder(image, 1, 1, 1, 1, cv.BORDER_DEFAULT)
    for i in range(1, image.shape[0] - 1):
        for j in range(1, image.shape[1] - 1):
            new_image[i - 1, j - 1] = np.mean(image[i - 1: i + 2, j - 1: j + 2])
    new_image = (new_image - np.min(image)) * (255 / np.max(image))
    return new_image.astype(np.uint8)

def rgb_arithmetic_mean(image):
    r,g,b = cv.split(image)
    r = arithmetic_mean(r)
    g = arithmetic_mean(g)
    b = arithmetic_mean(b)
    return cv.merge([r, g, b])
arithmetic_mean_img = rgb_arithmetic_mean(gauss_img)
plt.imshow(arithmetic_mean_img)

图像处理与分析 实验五

谐波

import scipy
import scipy.stats

def harmonic_mean_operator(roi):
    roi = roi.astype(np.float64)
    if 0 in roi:
        roi = 0
    else:
        roi = scipy.stats.hmean(roi.reshape(-1))
    return roi

def harmonic_mean(image):
    new_image = np.zeros(image.shape)
    image = cv.copyMakeBorder(image, 1, 1, 1, 1, cv.BORDER_DEFAULT)
    for i in range(1, image.shape[0] - 1):
        for j in range(1, image.shape[1] - 1):
            new_image[i - 1, j - 1] = harmonic_mean_operator(image[i - 1: i + 2, j - 1: j + 2])
    new_image = (new_image - np.min(image)) * (255 / np.max(image))
    return new_image.astype(np.uint8)

def rgb_harmonic_mean(image):
    r, g, b = cv.split(image)
    r = harmonic_mean(r)
    g = harmonic_mean(g)
    b = harmonic_mean(b)
    return cv.merge([r, g, b])
harmonic_mean_img = rgb_geometric_mean(salt_img)
plt.imshow(harmonic_mean_img)

图像处理与分析 实验五

逆谐波

def iharmonic_mean_operator(roi, q):
    roi = roi.astype(np.float64)
    return np.mean((roi) ** (q + 1)) / np.mean((roi) ** (q))

def iharmonic_mean(image, q):
    new_image = np.zeros(image.shape)
    image = cv.copyMakeBorder(image, 1, 1, 1, 1, cv.BORDER_DEFAULT)
    for i in range(1, image.shape[0] - 1):
        for j in range(1, image.shape[1] - 1):
            new_image[i - 1, j - 1] = iharmonic_mean_operator(image[i - 1: i + 2, j - 1: j + 2], q)
    new_image = (new_image - np.min(image)) * (255 / np.max(image))
    return new_image.astype(np.uint8)

def rgb_iharmonic_mean(image, q):
    r, g, b = cv.split(image)
    r = iharmonic_mean(r, q)
    g = iharmonic_mean(g, q)
    b = iharmonic_mean(b, q)
    return cv.merge([r, g, b])
iharmonic_mean_img = rgb_iharmonic_mean(salt_img, -2)
plt.imshow(iharmonic_mean_img)


图像处理与分析 实验五

正文完
 0
icvuln
版权声明:本站原创文章,由 icvuln 于2024-10-06发表,共计3049字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)