基于深度学习的图像降噪修复——文献调研

114次阅读
没有评论

共计 940 个字符,预计需要花费 3 分钟才能阅读完成。

提醒:本文最后更新于 2024-08-30 15:26,文中所关联的信息可能已发生改变,请知悉!

Deep image prior

Published in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

Date of Conference: 18-23 June 2018

Date Added to IEEE *Xplore*: 17 December 2018

ISBN Information:

Electronic ISBN:978-1-5386-6420-9

Print on Demand(PoD) ISBN:978-1-5386-6421-6

ISSN Information:

Electronic ISSN: 2575-7075

Print on Demand(PoD) ISSN: 1063-6919

INSPEC Accession Number: 18326119

DOI: 10.1109/CVPR.2018.00984

Publisher: IEEE

Conference Location: Salt Lake City, UT, USA

效果示例

基于深度学习的图像降噪修复——文献调研

多种方法的比较

基于深度学习的图像降噪修复——文献调研

论文地址

https://link.springer.com/article/10.1007/s11263-020-01303-4

项目展示

https://dmitryulyanov.github.io/deep_image_prior

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 4791-4800

效果示例

基于深度学习的图像降噪修复——文献调研

论文地址

https://openaccess.thecvf.com/content/ICCV2021/html/Zhang_Designing_a_Practical_Degradation_Model_for_Deep_Blind_Image_Super-Resolution_ICCV_2021_paper.html?ref=https://githubhelp.com

正文完
 0
icvuln
版权声明:本站原创文章,由 icvuln 于2022-07-03发表,共计940字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)